产品展示 | 联系我们 您好,欢迎访问M6米乐官网登录,我们将竭诚为您服务!
20年专注设备技术研发 专注技术 专心质量 专业服务
全国咨询热线:13528178965
您的位置: 首页 > 新闻动态

联系我们contact us

M6米乐官网登录
地址:广东省深圳市南山区前海路1428号南岗商务大厦1304室
联系人:米乐电竞下载
电话:13528178965
手机:13528138044

新闻动态

浅谈电动汽车中逆变器技术和市场分析

时间:2024-02-20 05:05:11 来源:M6米乐官网登录 点击:1次

  逆变器在电动汽车和混动汽车中发挥着及其重要的作用。其基本功能是将车载电池组提供的直流电转换为三相交流电,用于汽车的电机。此外,在再生制动期间,逆变器将交流电转换为直流电,为电池组充电。

  拥有一个高效且重量轻的逆变器能延续续航里程,并实现更快速的电动汽车充电。它还能减小电池组的尺寸,从而节省电动汽车的成本。逆变器有一个称为功率模块的组件,带有一个半导体开关装置,通过打开和关闭以改变电流方向来产生交流电。逆变器对电动汽车至关重要。

  对开关装置技术的选择在很大程度上取决于电压架构,因此,了解这在某种程度上预示着什么以及它将怎么样影响对很多类型逆变器的需求非常重要。

  传统内燃发动机驱动的轻型乘用车使用12V或偶尔使用24V的系统为车内电路(如电子控制器、车灯和信息娱乐系统)供电。为了更好的提高效率和排放控制,48V架构系统被开发出来。

  使用电力驱动,其中电机/发电机可以辅助内燃机或直接为车桥供电。某些辅助系统——如空调、强制感应和起停功能——能够最终靠48V的辅助电池组运行,从而大幅度降低油耗。凭借发电能力来支持车辆的轻混功能,48V系统将在未来几年内成为混动汽车中的常见配置。

  全电动和全混混合动力总成采用高压架构,电压通常在300V至600V之间,在某些情况下甚至更高。电动汽车驱动电机通常在高电压下运行,以提取足够的电力,以此来实现与燃油驱动汽车相当或更优越的性能和驾驶性能。

  电驱动系统的系统电压分为三个等级——最高48V为低压;48V以上至450V为中压;450V以上至1,000V为高压。

  就所使用的逆变器而言,三个电压等级之间预计将有很大差异。在低压类别中,硅(Si)金属氧化物半导体场效应晶体管(MOSFET)是最常用的逆变器类型,而绝缘栅双极晶体管(IGBT)逆变器最常用于中高电压等级。尽管在本预测所覆盖的年份里,低压和中压类别的这种层次结构不会改变,但在高压类别中,SiC逆变器将成为最常用的逆变器。

  目前,IGBT逆变器在高压级逆变器中的份额接近90%,剩余10%为SiC逆变器。然而,到2034年,这样的一种情况将出现重大变化,SiC逆变器预计将占55%的市场占有率,而IGBT逆变器的份额预计将下降到38%。此外,GaN逆变器预计将占高压逆变器类别的7%。

  在这十年的下半个五年里,汽车行业中GaN逆变器的使用也可能加快。然而,这项技术仍处于起步阶段,很难预测它将怎么样发展。根据S&P Global Mobility的预测,GaN逆变器预计将占高压逆变器类别(370万块)的7%。

  电动汽车中使用了四种类型的驱动逆变器,取决于半导体开关技术。本部分着眼于这些技术如何相互叠加发挥作用,以及电动汽车行业怎么样去使用这些技术。

  Si MOSFET逆变器大多数都用在轻混,但也用于低压混动。MOSFET具有三个端子,即源极、漏极和栅极端子。MOSFET在高达100V的低压应用和20千瓦的峰值功率中效率更高。这是因为较小的导通损耗和低压降,使其能够在高频下工作。然而,随着系统电压增加,高导通损耗使Si MOSFET逆变器的效率降低。随着汽车制造商将产品阵容转移到更高水平的电气化,如全混混动汽车和插电式混动汽车以及BEV,Si MOSFET将失去其市场份额。

  根据S&P Global Mobility预测,到2027年,对Si MOSFET逆变器的需求将增长,但与IGBT或SiC逆变器相比,上涨的速度较低。2027年之后,对Si MOSFET的需求将开始下降。对Si MOSFET的需求将从2027年的1,410万片下降到2034年的820万片,降幅为7.4%。同期内,轻混动力汽车的产量预计也将从1,250万辆下降至545万辆。

  IGBT从本质上结合了双极晶体管和MOSFET的物理特性,使其具有MOSFET的更高载流能力和高开关频率。IGBT是一种基于三相硅的开关器件,但IGBT没有源极、漏极和栅极端子,而是具有发射极、集电极和栅极端子。事实上,IGBT在全混混动汽车和BEV中的效率要高得多,因为IGBT的额定电压超过1,200V,而MOSFET的电压为600V。该开关器件最适合为35千瓦至85千瓦的驱动电机供电,使其成为入门到中级BEV的理想选择。与Si MOSFET相比,IGBT的开关频率较低,但对静电放电的耐受性较高。IGBT还具有在较高电压下较低的传导损耗。

  截至2023年,对IGBT逆变器的需求达到3,050万台。2023年,对IGBT逆变器的总需求中,63%来自全混混动汽车,36.5%来自BEV。

  到2029年,对IGBT逆变器的需求将继续增长,达到5,890万台。2029年之后,需求将下降,减少至5,380万台。同时,对SiC逆变器的需求也将增长。

  目前,IGBT逆变器在混动汽车中的应用最大,但到2030年代末,随着对纯电动汽车的需求增加,BEV将成为IGBT逆变器的主要细分市场。IGBT逆变器是目前BEV细分市场的主心骨,2023年占BEV所用逆变器份额的67%,但随着SiC技术走向成熟且更加容易获得,IGBT的份额将在未来10年内一下子就下降,并且在下一个10年,IGBT在BEV细分市场的第一把交椅将被SiC取代。

  GaN是汽车厂商和逆变器制造商正在研究的另一种宽禁带半导体技术。GaN相对于SiC的主要优势之一是禁带宽度为3.4伏特(eV),高于SiC的3eV和Si的1.1eV。GaN的固有特性实现了更快的开关能力,进一步提升了逆变器的性能。在某些电压架构下,GaN的效率甚至高于SiC。GaN仍是一项相对较新的技术,其在电动汽车逆变器中的应用仍在研究中。它们尚未用于市售电动汽车,预计将在晚些时候上市。GaN技术在高压应用(约400V汽车架构)的适用性方面仍面临一些技术限制,要解决这些限制,才能成为主流技术。随着系统电压增加,GaN芯片的尺寸也需要变大来维持效率。在空间存在限制的电动汽车等应用中,这不是理想的情况。考虑到GaN的最佳工作电压范围,它将很可能被视为Si的替代品,而非SiC。

  到2034年,轻型汽车细分市场对GaN逆变器的需求将接近550万台。BEV将成为GaN逆变器的最大用户,到2034年其份额将接近99.5%,全混混动汽车将占0.5%。到2034年,GaN逆变器在整个逆变器市场中的份额将达到4%。

  至于特斯拉,对GaN逆变器的需求将从2027年开始,达到32万辆。到2034年,特斯拉和大众合计将占全球GaN逆变器需求总量的近80%。

  在2021年,汽车动力总成技术公司hofer powertrain与高压汽车应用氮化镓(GaN)解决方案供应商VisICTechnologies Ltd.宣布建立合作伙伴关系,共同开发用于800V电动汽车的GaN逆变器。2023年2月,VisICTechnologies成功地为一家主流汽车厂商展示了其基于直接驱动D模式氮化镓(D³GaN)半导体技术的三相GaN逆变器,并配备了一台PMSM电机。该公司称,其三相GaN逆变器系统原型将在2023年第二季度末前在不一样的客户地点进行测试。

  2022年9月,Marelli宣布与都灵理工大学(Politecnico di Torino)电力电子创新中心(PEIC)合作,设计一款基于GaN技术的多电平900V大功率逆变器原型,用于电动汽车。

  高效的逆变器能延续电动汽车的续航能力和提高性能,而不会显着增加汽车的重量或成本。虽然IGBT拥有非常良好的效率,但由于其所基于的硅材料,它也有缺点。未解决这个问题,汽车行业正日益转向碳化硅,这是一种宽禁带(WBG)材料,可为逆变器提供更好的特性。与SIIGBT相比,SiC具有更高的电场击穿能力、更好的热导率、在更高的温度工作,以及更高的开关频率(由于电子禁带宽),因而开关和传导损耗更低。SiC更好的热导率使逆变器能够更快、更高效地散热。这允许使用更小的和具有成本效益的冷却解决方案。然而,SiC逆变器依然相对昂贵,更受高端电动汽车的青睐。

  截至2023年,对SiC逆变器的需求为550万台,占13%的市场占有率。根据S&P Global Mobility的预测,到2034年,SiC逆变器的需求将以22.8%的复合年增长率增长,达到5,250万台。到2034年,BEV将占SiC逆变器需求的很大一部分,占SiC逆变器需求总量的84.5%,全混混动汽车将占剩余的15%。到2034年,SiC逆变器将占逆变器总需求的44%。

  汽车制造商寻求提高汽车效率的方法之一是提高零部件的集成度。汽车中更高的集成度能提高空间利用率,减少系统损耗和提供更好的热性能。

  截至2023年,电机+逆变器的集成是BEV和轻混汽车中使用最广泛的配置。在一辆电动化轻型汽车中,约49%的逆变器采用这种配置。紧随其后的是逆变器+DC-DC配置,占有31%的市场占有率。逆变器+DC-DC是全混混动中最常使用的配置。

  在可预见的将来,电机+逆变器预计将仍然是首选配置。实际上,到2034年,这种配置的份额将增加到61%。另一方面,逆变器+DC-DC集成配置的份额将下降,同期内占比将跌至19%。

  目前,作为独立装置配备的逆变器占电动汽车逆变器总安装量的19%。到2034年,这一比例预计也将保持在18%的水平。

  当今市场上的大多数电动汽车均基于400V系统架构,但鉴于要解决有关续航能力的焦虑、延长续航里程并缩短充电时间,在不久的将来,很多电动汽车将基于800V架构。目前,只有奥迪、保时捷、现代和起亚拥有基于800V架构的电动汽车,而Lucid Motor的Air基于900V+架构。

  充电速度更快,从而显著缩短充电时间(几乎高达50%)——这能减小电池组的尺寸,以此来降低车辆的总体成本

  随着系统电压翻倍(即从400V到800V),电流量减少,从而允许使用更细、更轻的电线和电缆

  改用800V架构将需要宽禁带半导体,如SiC和GaN。与Si相比,SiC有很多优点,比如对温度不那么敏感,提供更高效的开关,可以应对高达200℃的结温。

  特斯拉和比亚迪凭借对SiC逆变器的需求最大,在竞争中处于领头羊。随着BEV需求上升,叠加向800V架构的转变,对SiC逆变器的需求也将上升。展望未来,到2034年,丰田、大众、雷诺-日产-三菱、Stellantis、宝马、梅赛德斯-奔驰、吉利和特斯拉将引领对SiC逆变器的需求。对于除丰田以外的所有汽车厂商而言,几乎所有的SiC逆变器需求将来自其BEV产品线%的SiC逆变器需求将来自全混混动汽车,剩下40%来自BEV。就大众而言,对SiC逆变器的需求将从2026年开始大幅度增长,达到130万台,并在2034年增加到690万台。

  现代汽车:现代汽车在2022年CEO投资者日研讨会上宣布,其计划到2030年每年销售187万辆BEV,并推出17款新的BEV车型。在2021年,现代汽车宣布了将BEV车型数量从2021年的8款增加到2025年的23款的计划。所有23款新的BEV车型将基于现代汽车的电动全球模块化平台(E-GMP),支持800V和400V充电。现代汽车已选择在其E-GMP平台中使用SiC技术。它选择了意法半导体的ACEPACK DRIVE SiC-MOSFET第三代功率模块,可提供更长的续航能力。意法半导体声称其ACEPACK DRIVE SiC-MOSFET为驱动逆变器提供了一种即插即用的解决方案,最高结温为175℃。ACEPACK DRIVE从2023年3月开始全面生产。

  沃尔沃:据称沃尔沃正在开发一个名为全球产品架构(GPA)的平台,该平台将基于800V架构。在2022年6月的新闻稿中,Polestar宣布,其计划于2024年推出的Polestar5电动汽车将基于800V架构,以及双电机全轮驱动动力总成。

  蔚来:2021年6月,中国大陆汽车厂商宣布,该公司已生产出第一批用于ET7车型的SiC电驱动系统的C原型。该公司称,SiC驱动系统将更加紧凑、高效,并且重量轻。

  Rivian:Rivian的专有800V架构包括一个集成式车载充电器、DC-DC转换器和DC-AC转换器,以及用于双电机和四电机配置的驱动装置。

  吉利:2021年,罗姆半导体和吉利宣布合作开发SiC功率器件。根据该合作伙伴关系,吉利将在其驱动逆变器和车载充电系统中使用罗姆的SiC功率器件,旨在延长其电动汽车的续航里程。

  梅赛德斯-奔驰:2022年,安森美宣布,其用于逆变器的SiC技术已被梅赛德斯-奔驰用于其全电动VISION EQXX电动汽车。

  大众:2023年1月,大众与onsemi建立战略合作伙伴关系,根据协议,onsemi将向大众提供SiC功率模块(EliteSiC功率模块)和技术,用于大众的下一代电动汽车。

  由于对SiC的需求将与对BEV的需求成正比,以及向800V架构的转移,大多数供应商正在研究SiC逆变器技术。2023年2月,博格华纳获得一份订单,向一家主流汽车厂商供应两种800V SiC逆变器,以用于该汽车厂商的BEV平台。一个250千瓦的模块将被用于乘用车和全轮驱动跨界多用途车,而另一个350千瓦的模块将用于该汽车厂商的高性能汽车。这些SiC逆变器将基于博格华纳的专利“Viper”SiC800V功率模块,并采用双面冷却技术。这些新的SiC逆变器将从2025年开始生产,每年40万台。

  Marelli在2022年展示了其全新的综合性800V SiC逆变器平台,确保了逆变器在尺寸、重量和效率方面的改善。此外,Marelli还内部开发了逆变器软件,该软件由位于逆变器外壳中的电子控制器(ECU)控制。

  2023年3月,电装宣布已开发出SiC逆变器,将用于即将上市的雷克萨斯RZ车型(该公司的首款BEV),作为BluE NexusCorporation开发的电驱动模块eAxle的一部分。

  据S&PGlobalMobility估计,到2034年,电装、特斯拉、伊顿、阿联酋航空、比亚迪、宝马和纬湃科技预计将成为SiC逆变器的主要供应商。到2034年,电装预计将供应超过1,200万台SiC逆变器。与此相似,博格华纳的SiC逆变器销量将从2023年的8万台增加到2034年的450万台,复合年增长率接近44.2%。

  比亚迪半导体部门于2022年6月推出一款1,200V1040A SiC功率模块,将用于其大功率新能源汽车(NEV)平台。该公司称,这款新型SiC功率模块可带来30%的功率提升,并采用双面烧结工艺,使连接层的热导率提高10倍,可靠性提高5倍。

  2022年,特斯拉生产了近204万台SiC逆变器,引领了SiC生产。然而,特斯拉在2023年3月宣布,该公司正致力于开发一种用于低成本电动汽车的动力总成,将减少75%的SiC逆变器使用。

  全球逆变器需求总量将从2023年的4,399万台增长到2034年的1.2亿台,复合年增长率为9.55%。目前,IGBT逆变器是全球所有类型电动汽车中普遍的使用的逆变器类型,其次是Si MOSFET。然而,随着对BEV需求的增加和向800V架构的转变,对SiC逆变器的需求可能会增加。到2034年,SiC和IGBT逆变器的市场占有率将分别达到44%和45%,几乎均分。

  按动力类型来看,到2034年,逆变器需求总量中BEV将占67%,其次是全混混动汽车,占26%。

  主要汽车地区对逆变器的需求与该地区生产的替代动力汽车的数量直接相关。大中华区在逆变器总体需求方面处于领头羊,并将在本预测所覆盖的年份里继续保持领先。

  2022年,大中华区共使用了1,250万台逆变器。截至2023年,大中华区的逆变器需求达到1,688万台,预计该需求将以9%的复合年增长率增长到4,350万台。逆变器需求的很大一部分将来自BEV,其次是全混混动汽车。2034年,BEV将占大中华区逆变器需求总量的68%。目前IGBT逆变器类型占大中华区逆变器需求的较大部分,但到2034年,随着BEV的增长,SiC逆变器将成为大中华区最受喜爱的逆变器类型。

  2022年,逆变器需求量为724万台。截至2023年,欧洲对逆变器的需求为1,020万台,并将增长到2,240万台,复合年增长率为7.4%。目前,欧洲市场上最受欢迎的逆变器类型是IGBT逆变器类型,市场占有率为61%,MOSFET逆变器类型为31%。IGBT逆变器需求由全混混动汽车驱动,占需求的37%。

  SiC逆变器类型需求低迷,2023年仅占欧洲逆变器总需求的8%。尽管如此,对SiC的需求将上升,到2034年,将占欧洲逆变器总需求的60%以上。欧洲逆变器需求量开始上涨将源于BEV需求增加,到2034年,BEV将占欧洲逆变器需求总量的89%。

  截至2023年,日本/韩国地区的逆变器需求为881万台,到2034年将增长到1,595万台。IGBT逆变器类型在日本/韩国地区需求中占很大比例,这种趋势将持续到2034年。IGBT逆变器类型的需求主要受到全混混动汽车需求量开始上涨的推动。2032年以前,全混混动汽车将主导日本/韩国的逆变器需求。从2033年起,BEV对逆变器的需求将超过全混混动汽车对逆变器的需求。到2034年,BEV将占日本/韩国逆变器需求总量的48%,全混混动汽车将占43%。2034年,SiC将占日本/韩国逆变器总需求的42%,IGBT将占46%。

  IGBT逆变器类型占北美逆变器需求的一大部分。截至2023年,对逆变器的需求为630万台,预计到2034年将达到2,500万台。

  与2023年的当前需求相比,预计到2028年,电机需求将增长14倍,到2034年增长36倍。2034年,永磁电机的市场占有率将继续接近79%,但其销量将增加到9,560万辆。鉴于对稀土供应的担忧,一些公司正努力开发使用稀土的电机,或尝试采用替代电机类型,例如感应电机和绕线转子同步电机。然而,由于缺乏任何商业上可行的技术,我们预计永磁电机将继续成为电动汽车行业的主流。

  随着对提高效率和延长续航里程的需求持续存在,汽车行业将见证大多数汽车厂商的电动汽车改用800V架构。由于SiC逆变器的开关效率高且损耗较小,需求将旺盛,并将被广泛采用。SiC逆变器的广泛采用将导致许多汽车厂商和供应商选择和半导体公司做垂直整合,以保障SiC的供应。

  据外媒报道,电动汽车电池技术领导者OneD Battery Sciences宣布推出一项可为下一代电动汽车电池提供动力的突破性技术——SINANODE。对于电动汽车行业而言,打造含有更多硅的电池一直是一个挑战,而SINANODE无缝集成至现有的生产的基本工艺中,让硅纳米线与商用石墨粉末融合,将电池阳极的单位体积内的包含的能量提高了两倍,但是将每kWh的成本降低了一半。单位体积内的包含的能量更高可以让电池的续航更长,而纳米线能够缩短充电时间,让OEM设计和生产出满足了人们对搭载更好电池的电动汽车的需求。 OneD Battery Sciences的logo(图片来自:OneD Battery Sciences) 在过去三年中,美国、欧洲和亚洲的石墨供应商

  问世! 密度提高2倍成本降一半! /

  里程焦虑是电动汽车行业的热门话题之一,如何提升电动汽车的续航能力从而改善驾驶体验对电动出行至关重要,其中优化逆变器和电机的运行效率是电动汽车能量管理的基石之一。本文将介绍怎么样去使用Vector-CSM的电动汽车高压测量系统对逆变器和电机进行精确的实时效率分析。 背景介绍 为提升续航里程,需要对电动汽车动力系统的组件来优化。逆变器在整个动力系统中起着及其重要的作用,高效能的逆变器能够大大减少电池与电机的能量转换过程中的损失,比如在驱动过程中,由于PWM开关性能和废热,会损失部分能量,而在制动过程中,逆变器可以将能量回收,按需给电池充电,这样的一个过程也会有能量损失。测量逆变器和电机的效率为评估和验证电动汽车动力总成设计和优化控制系统软件算法提供参

  和电机的实时效率测量 /

  最近,特斯拉公布了一项名为“汽车引擎盖铰链装置”(Hinge Assembly for a Vehicle Hood)的专利。据专利所说,该款新型铰链装置能在行人撞到汽车引擎盖时保护行人。如今,类似的系统其实已经在汽车上投入到正常的使用中,不过特斯拉认为传统设计仍有许多需要改进的地方。 现代汽车的安全标准是保护行人免受头部撞击伤害,例如防止行人被撞上时接触到车辆引擎盖。为满足此类要求,目前最先进的安全系统是主动安全系统,其中通常包含一个传感器系统,以探测与行人之间发生的碰撞,并且在撞到行人之前,激活(使用烟火)一个驱动装置,让前车盖抬高至一个保护行人的位置。不过,此种系统可能会被错误触发,而且由于烟火激活操作不可逆,只可以使用一次,且

  从2009年年底至今,嘉盛控股的神话还在继续。昨日公司公告,以总代价27.5亿港元,收购目标公司Union Grace Holdings Limited全部权益。此外,嘉盛控股将向长和系主席李嘉诚折价18.9%配售4亿股股权。至此,嘉盛控股将Union Grace Holdings Limited及及其附属中聚雷天(香港)纳入囊中,正式进军电动汽车及锂电池领域。       消息一出引发股价大涨,1月26日嘉盛控股收盘大涨62.22%,盘中更是摸到1.57港元的高位。其实,嘉盛控股股价狂飙的神话早已上演。公司于去年年底宣布收购中聚雷天进军炙手可热的新能源业务后,股价便一路攀升,从2009年12月1日的0.130港元

  记者从工业信息化部了解到,为贯彻落实《节能与新能源汽车产业高质量发展规划》,加快推进我国电动汽车标准研究制定和产业健康发展,在前期研究和汽车业界讨论的基础上,工业与信息化部决定成立电动汽车国际标准法规制定与协调工作组。 工信部表示,该工作组有明确的工作章程和组织架构。其中组织架构方面,工作组由国内汽车整车及动力电池等零部件相关企业、电网公司、科研院所、高等院校和行业组织机构等近40家成员单位组成,装备工业司司领导任组长,全国汽车标准化技术委员会秘书处(中国汽车技术研究中心)承担秘书处工作;各成员单位选派专家分别组成电动汽车安全专家组、电动汽车与环境专家组。 其中,电动汽车安全专家组由中国第一汽车集团公司担任组长单位,北京汽车股份有限公司

  8月12日消息,欧盟和韩国对美国拟议的电动汽车购买税收抵免计划表示担忧,称这是“歧视”外国制造的汽车,并违反世界贸易组织(WTO)的规则。 美国参议院上周通过4300亿美元的《通胀削减法案》,宣布将取消电动汽车税收减免的7500美元上限,但同时施加限制,要求电池部件和关键矿物必须从北美采购。 “我们大家都认为这是歧视性的,相对于美国生产商而言,它是对外国生产商的歧视,并且不符合世贸组织的规定”,欧盟委员会发言人表示。 她还补充说:“我们应该确保所推出的措施是公平和非歧视性的。因此,我们继续敦促美国从该法案中删除这些歧视性内容,并确保它全部符合世贸组织的规定。” 韩国贸易部发布声明称,它已要求美国贸易当局放宽电池部件和汽车

  电动化,是中国车企走向国际的一大契机。商用车比亚迪已经尝到甜头,乘用车有最新动作的是 上汽 。 上汽名爵旗下首款纯电动 SUV 名爵ZS纯电动在2018广州车展亮相。该车将于明年上半年上市,在英国和德国等国销售。前期,名爵ZS纯电动还将在英国、比利时、卢森堡、西班牙、德国和法国等欧洲国家路测。 借助英国老牌车企的国际影响力,为名爵ZS纯电动搭载上汽的“三电”系统,上汽借助电动化走出去的战略计划,不言自明。外国人能买账吗? 不一样的“四化” 汽车行业的“四化”正热。按照行业普遍的说法,“四化”指电动化、智能化、网联化和共享化。 上汽名爵的提法有点不一样。 上汽“新四化”

  纯电动汽车的发展,一直都是政府怀抱中最调皮的一个,在纯电动汽车行业中玩的比较大的厂家,国外是特斯拉,国内则应该是比亚迪和江淮了。这是对于电动汽车行业中的正规军来讲,转而来看低速电动车,低速电动汽车也在发展,只是大家都没太把它放心上而已。但是从整体看来,纯电动汽车的销量仍然与汽油或混动汽车的销量相差甚远,这个原因有人讲,是因为充电桩没有普及,但是智驾君认为此事绝不简单… 公共建设:怪我咯?! 充电桩的普及一直都是不可避免要拿来讲讲的话题。之前电动汽车发展的瓶颈有一部分是因为技术问题,另一部分就是充电桩的普及。充电桩是除了电动汽车自身电池续航能力以外第二个约束电动汽车行驶里程的因素,充电桩对于电动汽车来讲就是加油站

  三合一电驱动系统效率测试

  用驱动电机系统可靠性试验方法

  驱动电机选配方法

  用轮毂电机研究热点及趋势分析

  直播回放: 节能减碳 - 用于光伏逆变器/储能系统的欧姆龙继电器‧开关‧连接器解决方案

  直播回放: 借助Sitara™ AM263x MCU 创造电气化的未来

  MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!跟帖赢好礼~

  电源小课堂 从12V电池及供电网络优化的角度分析电动汽车E/E架构的趋势

  解锁【W5500-EVB-Pico】,探秘以太网底层,得捷电子Follow me第4期来袭!

  英特尔成立独立FPGA公司,加速行业创新继宣布将可编程解决方案事业部 (PSG) 作为独立业务部门运营后,英特尔将于3月1日举行FPGA Vision ...

  短短几日,AI又掀起新一轮浪潮,而作为其核心动力的AI芯片,也迎来巨变。...

  fm音频发射电路图(一)这是FM麦克风在麦克风中说话并在FM接收器上听到您的声音的电路图。该电路包含麦克风前置放大器,用于增加微弱声音的 ...

  基于NE555定时器音调发生器电路(一)这是基于NE555定时器的音调发生器电路。NE555是一个非常有名的IC,用于许多电路,并执行各种任务。在 ...

  易于构建的2瓦音频放大器电路一个格外的简单的迷你易于构建的2瓦音频放大器电路,很适合用于袖珍收音机和其他小型音频小工具等小型项目。该 ...

  站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科

在线客服
联系方式

热线电话

13528178965

上班时间

周一到周五

手机号码

13528138044

二维码
线